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Abstract

Plane elasticity theory of one-dimensional quasicrystals dealing with all point groups is investigated systematically.
The governing equations of elastic fields and their general solutions are derived by the complex variable functions
method. As an example, the elastic fields of a straight dislocation along the quasiperiodic axis of an orthorhombic
quasicystal are calculated. The relevant singularity of the stress field for the dislocation in the quasicrystals is also
discussed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Many experiments and theoretical analyses have shown that quasicrystals(QCs) are new materials with a
complex structure and unusual properties (Ronchetti, 1987; Socolar et al., 1986; Wang et al., 1997; Fan,
1999; Fan and Mai, 2003 etc.). The discovery of this new solid structure and the production of large single
grained QCs in various alloy systems with thermodynamical stability brings about not only a profound
revolution in traditional theory of crystals, but also a challenge to the mathematical methods on describing
and analyzing the structure quantitatively. Among various QCs, one-dimensional (1D) QCs are of par-
ticular interest for the researchers after the success of Merlin et al. (1985) in growing model systems, where
quasi-periodicity is built up. From experimental side, it has been possible to construct Fibonacci super-
lattices by epitaxial growths methods (Merlin et al., 1985) and some stable 1D QCs have been obtained
(Yang et al., 1996). From theoretical side, Wang et al. (1997) derived all the possible point groups and space
groups of 1D QCs; Liu et al. (1997) studied the physical properties of 1D QCs. However, comparatively less
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works have been done on the theory of elasticity of 1D QCs. The difficulty to tackle these types of problems
comes from more elastic constants as well as coupling phonon—phason fields. Although there are some
research papers on elasticity theory of 1D QCs (Fan et al., 1999; Li and Fan, 1999; Peng and Fan, 2000;
Peng et al., 2000; Peng and Fan, 2001; Liu et al., 2003), they involve only the elasticity theory of 1D
hexagonal QCs with point group 6mm, which is the simplest class of 1D QCs. The present paper is devoted
to general solutions of plane elasticity problems of 1D QCs, dealing with all point groups and its appli-
cation.

Defectiveness of quasi-crystalline materials was observed (Zhang and Urban, 1989). It is well known that
defects influence physical and mechanical properties of solid materials greatly. Experiments showed that
QCs are quite brittle (Meng et al., 1994), and the brittle materials are sensitive to the defects. As an
application of elastic theory of the QCs, one typical example of dislocation is investigated and the exact
analytic solutions of the elastic fields are given.

2. Basic theory

A 1D QCs is defined as a three dimensional body of which the atom arrangement is periodic in a plane
and quasi-periodic in the third direction. From Wang et al. (1997), there are 31 possible point groups in 1D
QCs, which are divided into ten Laue classes and six systems, namely, triclinic, monoclinic, orthorhombic,
tetragonal, trigonal and hexagonal system. In the case of plane elasticity, the body of QCs must have at
least a symmetric plane. On the other hand, there exists at least one symmetric plane in all 1D QCs systems
except triclinic QCs, so the investigation of the plane elasticity of 1D QCs is meaningful and extensive. In
this paper, we assume the unique quasi-periodic axis of 1D QCs is axis x; in a rectilinear coordinate system
(x1,%2,%3).

A theoretical description of the deformed state of QCs requires a combined consideration of interrelated
phonon and phason fields. Owing to the existence of phason fields, the elasticity of QCs is more complex
than that of the conventional crystals. In QCs, a phason displacement field v exists in addition to a phonon
displacement field u(u;, uy,u3). They have mutual interaction.

Let €11, &2, €33, €23, €31, €12, W33, W31, W3, denote the phonon strains ¢; and phason strains ws;, and oy, 622,
033, 023, 031, 012, Has, H31, Hy, denote the phonon stress o;; and phason stress Hs;, respectively. Then the
generalized Hooke’s laws of the elasticity problem of 1D QCs are

Gij = ijklgkl +Rl—j3[W31 (i,j7 k, l = 1,2, 3), (1)

Hi; = Ryzjen + Kzjaws 2)
and the static equilibrium equations in the absence of body forces are

01011 + 02012 + 03013 =0, 010y + 0202 + 03023 = 0, (3)
01031 + 0203 + 03033 =0, 01H3 + 0,3, + 03H33 = 0. (4)
Besides, geometry equations are given by
1
sijzi(ajui+@iu,), W3j:ajl], l,j: 1,2,3. (5)

Here we have used tensor notation and 0, = 0/0x;, the same hereafter.
Eqgs. (1)-(5) are the basic relations of elasticity theory of 1D QCs.
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3. Plane elasticity and governing equation of monoclinic QCs

For monoclinic QCS, there are 25 elastic constants in all, namely, C]]]], szzz, C3333, C]122, C1133, C]]]z,
Ca33, Coiz, Caziz, Cazzz, Canat, Capzr, Crapp for phonon fields, Kisss, Kaisi, Kins, Kiis; for phason fields, and
Ri133, Ro33, R33a3, Rizs3, Rossi, Rossa, R3isr, R3pz for coupling phonon—phason fields.

So the generalized Hooke’s laws of monoclinic QCs are given by

o1 = Cnen + Cnén + Cizéss + 2C6e10 + Ryiwss,

02 = Ciaén1 + Copéx + Cazész + 2Cx6e12 + Rawsz,

033 = Cizenn + Caaém + Cazész + 2Cs6812 + R3ws,

023 = 03 = 2Cs823 + 2Cys5€31 + Rywy + Rsw,

031 = 013 = 2Cys623 + 2Csse31 + Rewi + Rywso, (6)
012 = 021 = Cigénr + Casenr + Cigész + 2Cesee12 + Rywaz,

Hi; = 2Rqe03 + 2R3 + Kyws + Kywsa,

Hy = 2Rsex3 + 2R7e31 + Kywsy + Kaws,

Hy; = Rien + Ryén + R3ézs + 2Rgenn + Kywss.

Here and subsequently we write the elastic constant Cj;; in a contracted matrix notation C,, as was done in
the case of conventional crystal, and we have K331 = K, K33 = K, Kss33 = K3, K313 = Ky, Ri33 =Ry,
Ry33 = Ra, Ryzzs = R3, Ryzzi = Ry, Razzy = Rs, R3iz1 = Re, R332 = Ry and Rz = Rg.

When the direction of defects such as infinitely long straight dislocations and cracks etc. is parallel to the
quasi-periodic axis of 1D QCs, the geometry properties of the materials will not change along the quasi-
periodic direction. If we take quasi-periodic axis of 1D QCs for axis x3, then

o) _y, )

o

i.e. all fields variables depend only on coordinates x; and x,. This is so-called plane elasticity (Fan, 1999).
Substitution of Eq. (7) in Egs. (3)—(6) leads to two separate problems as follows:

Problem I
023 = 03 = 2Cu823 + 2Cys€31 + Raws1 + Rsws, (8)
031 = 013 = 2Cys623 + 2Csses1 + Rewsi + Rywsa, )
Hs1 = 2R4e03 + 2R3 + Kiwsy + Kqws,, (10)
Hyy = 2Rsép3 + 2R7e31 + Kaws + Kowsa, (11)
1 .
ey = &3 =503, wy =00, j=12, (12)
01031 + 02030 =0, 01H3; + 0,H3 = 0. (13)

This is a anti-plane elasticity problem for coupling phonon—phason fields.
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Problem II
o1 = Crien + Cpéxn + 2Cieé12, (14)
022 = Cpén + Caép + 2Cxéna, (15)
012 = 021 = Cieén + Casénr + 2Ces812, (16)
033 = Cizen + Cozemn + 2Cs6¢12, (17)
Hs3 = Riey) + Raeyy + 2Rsen, (18)
1 ..
& = i(a,u,- +0u;) i,j=1,2, (19)
01011 + 02012 =0, 010y + 0y05 = 0. (20)

This is similar to a plane strain problem for monoclinic crystal, but has an extra Eq. (18) here.
For Problem I, substituting Eq. (12) into Egs. (8)—(11), then into Eq. (13), yields the equilibrium
equations in terms of displacements as follows:

(Cs50% + Cyg0% + 2C450,0y)u3 + [R6d? + R503 + (Ry + R7)0,02)v = 0, (21)
[R66% + R56§ + (R4 +R7)6162]u3 + (K16% -+ Kzag + 2K46162)U =0. (22)

This is a set of partial differential equations for coupling phonon—phason fields, which is very different
from that of conventional crystals. It seems to be extremely difficult to find the solution by means of direct
integration due to the complexity of the equations. Now we introduce a displacement potential function to
simplify above equations. Let

uy = [Rs07 + Rsd3 + (R4 + R7),0,]F, v = —(Cs50? + C4403 + 2C450,0,)F, (23)

where F(x;,x;) is the displacement potential function introduced. It is clear that Eq. (21) is satisfied.
Substituting Eq. (23) into Eq. (22), we have

(6116‘11 + azﬁ‘;@z + a;@f@% + a4616§ + 056‘2‘)F = 07 (24)
with constants

a; = R; — KiCss, a» = 2[Rs(Ra + R7) — K1 Cas — K4Css),
a3 = 2RsRg + (Ry + R7)* — Ky Cyy — KrCss — 4K,y Cis, (25)
as = 2[Rs(Ry + R7) — K>Cus — K4Cus), as = Rz — K>Cus.

Eq. (24) indicates that the terminal governing equation of Problem I is a fourth-order partial differential
equation. Furthermore, substitution of Eq. (23) in Egs. (8)—(11) yields

032 = [(RsCas — R4Cs5)0} + (RsCas — RyCas + R7Cys — R5Cs5)010, + (R7Cay — R5Cys)0103)F, (26)

031 = [(RsCss — R7C14)03 + (RsCss — R7Cys + RyCys — RgCag)030; + (R4Css — RsCas)0207)F, (27)
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Hs = [Rsd? + Rs03 + (Ry + R7)0102)(Rs50y + R701)F — (Cs507 + Cyg®3 + 2Cy50,0,) (K401 + K202)F,
(28)

Hy, = [Re0} + R50% + (R4 + R7)0,05) (R4 + R601)F — (Cs50% + Cag®3 + 2C450,02) (K101 + K40,)F.
(29)

These are the representations of stress components in terms of the displacement potential function cor-
responding to Problem I.

For Problem II, substituting Eq. (19) into Egs. (14)—(16), then substituting the obtained results into Eq.
(20), yields the equilibrium equations in terms of displacements as following:

(C“a% + Céﬁag + 2C166162)M1 + [C166f + CZ(,@% =+ (C12 + C66)6162]u2 = 0, (30)

[C1607 + C2603 + (Ciz + Ce6)0102)ur + (Ce60d7 + C2d3 4 2C60102)ur = 0. (31)
Like Problem I, we introduce a displacement potential function to simplify them. Let
u = [Clﬁa% + CZ(,a% + (C12 + C6(,)61©2]G, Uy = —(Clla% =+ C%a% =+ 2C166162)G, (32)

where G(x,x;) is another displacement potential function introduced. It is clear that Eq. (30) is satisfied.
Substituting Eq. (32) into Eq. (31), we have

(016‘1t + 026%62 + 036f6§ + 046163 + csag)G =0, (33)
with constants
= C126 —C1Ce, €= 2(C16C12 - C11C26)7
c3 = C}, — 2C16Ca6 + 2C12Ce5 — C11Caa, (34)
cs =2(Co6Crp — C16Cn), 5 = Crg — CCe.
Eq. (33) indicates that the terminal governing equations of Problem II is also a fourth-order partial
differential equation. Furthermore, substitution of Eq. (32) in Egs. (14)-(16) yields
011 = [(C11Cess — Ci)0702 + (C11Cag — C16C12)0103 + (C16Cas — C12Cs6)03) G, (35)

02 = [(C12C16 — C11C)0; + (Cty + C12Cs6 — C16Ca5 — C11C22) 0702 — 2C15C260102 + (Cog — C2Co6)03) G,
(36)

012 = [(Cls — C11Ca6)03 + (C12C16 — C11Ca6)010; + (C12Ce6 — Ci6Ca6)0103]G. (37)

Similarly, o33 and Hs; can also be obtained, which are omitted here because we consider the stresses in the
x1—x2-plane only.

These are the representations of stress components in terms of the displacement potential function
corresponding to Problem II.

Hence, the plane elasticity of 1D monoclinic QCs is governed by two fourth-order partial differential
equations (24) and (33).

4. General solution for monoclinic QCs

Following Sosa (1991) and Lekhnitskii (1963), the solution of the fourth-order partial differential
equation (24) can be represented by two analytic functions F;(z;)(k = 1,2) as following
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2
F(xl,xz) = 2RCZE{(Z/C), Zr = X1 + Wi X2, (38)
k=1

where Re denotes the real part of corresponding complex expression; u, = o +1if, (withi=+v—1, k= 1,2)
are distinct complex parameters to be determined by the characteristic equation

asp* + ayl’ + a3’ + ayp 4 ay; =0, (39)
and p; # p,.
If the roots of Eq. (39) are multi-roots, namely u, = u,, we have
F(Xl,)Q) = 2RC[F1(21) +Z_1F'2(Zl)], zZ1 =X + HiX2. (40)

The w,(k =1,2) can be, in principle, calculated analytically when the elastic constants of the QCs are
given.
Substitution of Eq. (38) in Egs. (23) and (26)—(29) yields
2
s = 2Re Y [Re+ (Ry + Ry + Rl fiz), (41)

k=1

2
v=—2Re (Css + 2Cusiy + Caatt)fi (), (42)

k=1

2
g3 = 2Re Z[R<>C45 — R4Css + (RgCag — R4Cas + R7Cas — RsCss) iy + (R7Cas — RsCas) 15111 (z4),  (43)

k=1

2
g3 = 2Re Z[R4C55 — RsCys + (RsCss + RyCys — R7Cys — RsCas) 1ty + (RsCys — R1Cas) 1]t (21),

k=1

(44)
2
Hyy =2Re > [(Ry + Rsy)) (Rs + Rapy + Ropyy + Rsp) — (Ko + Kopt) (Css + 2Caspy, + Caagy)1f; (1),
k=1
(45)
2
Hyy = 2Re Y [(Ro + Rapy)) (Ro + Rapyy, + Ropy + Rspiy) — (Ko + Kay) (Css + 2Caspy + Caagty) 13 (20),
k=1
(46)
where fi(z¢) = 02 Fi(zi) = F' (24)-
Similarly,
2
G(x1,x3) =2Re Y Gi(&), & =x1 + Ao, (47)
k=1

where &, = oy +1f,, (With1 =+ —1,k = 1,2) are also distinct complex parameters to be determined by the
characteristic equation

e+ e+ e3P+ ed+e =0. (48)
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And
2
u; = 2Re Z[Cm + (Cia + Coo) s + Castlgn (&), (49)
=1
2
u, = —2Re Z(Cu + 2Ci644 + Cosl)gr (&), (50)
=1
2
a1 = 2Re Z[C%Cll — Cis + (C11Ca6 — C12Cig) s + (C16Cag — C12C66)i/2¢]/1kg;¢(ék)7 (51)

k=1

2
o»n = 2Re Z[Clﬁclz — C11Cos + (C% + C13Cs5 — C16Cas — C11 C) i — 2C16Crr
=

+ (C34 — C22C66))L13¢]g1,c(ék)7 (52)

2
612 = 2Re Y [Cl; — C11Cos + (Ci6Cra — CriCa) i + (C12Co6 — Cr6Cas) 24124 (&), (53)

k=1

where g, (&) = 02, Gi(&) = G{(&).

These are the complex variable representations of displacement and stress components of phonon fields
and phason fields in 1D monoclinic QCs. They are so-called general solutions of plane elasticity of 1D
monoclinic QCs. With this general solutions, it is very convenient to give the special solution of some
dislocation and crack problems of 1D QCs.

5. Other 1D QC systems
5.1. Orthorhombic QC system

In the sequel, the meaning of symbol for the point groups is the same as in (Wang et al., 1997).
Orthorhombic QCs comprise the point groups 2,22, mm2, 2;mm;, and mmm;, which belong to one Laue
class. Owing to the increase of symmetric elements of orthorhombic QCs in comparison with monoclinic
QCs, one has also

Cio=Cyx=Cy=Css=Ks =Ry =R; =Ry =0. (54)

Therefore the number of non-zero elastic constants of orthorhombic QCs reduces to 17, namely, Cy, Cy,
Cs3, Cp, C3, Ca3, Cyy, Css, Cgg for phonon fields; K, K>, K3 for phason fields; Ry, R», R3, Rs, R¢ for coupling
phonon—phason fields.

Substituting (54) into Egs. (25) and (34), we find that a; and as are the same as in (25), and

a =a; =0, a3=2RsRs— K Cy4 — K,Css,
c1 =—CnCs, c2=c4=0, c5=—CnCe, (55)
c3 = C% +2C1pCe6 — Cy Cay.
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Furthermore, all fields variables are simplified as follows

2 2
u = 2(Co+ Coe)Re Y 4gel(&), = —2Re Y (Cii + Cooy)2i(&r), (56)
k=1 k=1
2 2
uy =2Re > (Re+Rsi)fi(zr),  v=—2Re> (Css+ Caasif)fi(z1), (57)
k=1 k=1
2
o1 = 2Re Z(Céécll - C12C66/112¢)lkgllc(ék)a (58)
k=1
2
o»n = 2Re Z[(Cfg + C12Ce6 — C11C) — szcééﬂvz]lkgﬁc(fk% (59)
k=1
2
g2 =2Re Z(_C11C66 + Clzces;bi)g;c(fk)y (60)
k=1
2
O3 = 2Re Z(R6C44 — R5C55)ukﬂ(zk), (61)
k=1
2
031 = 2(RsCss — ReCas)Re Y _ i3 f;(z1), (62)
k=1
2
H2 = 2Re Z[RSR(, — K2C55 —|— (Rg — K2C44),uﬂukf,£(zk), (63)
k=1
2
H1 = 2Re Z[Ré — K1 C55 + (R5R6 — K1C44),ui]f,§(zk). (64)

k=1

5.2. Tetragonal QC system

1D tetragonal QCs divide into two Laue classes. Point groups 42,m, 4mm, 42,2, and 4/m,mm in the
QCs belong to one Laue class. Owing to the increase of new symmetric elements of tetragonal QCs, besides
(54), one has also

Ci=Cyp, C3=0Cy, Cu=Cs, K=K, R =R, Rs=Rs (65)

Therefore the number of non-zero elastic constants of 1D tetragonal QCs reduces to 11.

Substituting (65) into Eqgs. (55)—(64), simplified forms of the governing equations and general solutions
will be obtained.

Point groups 4, 4 and 4/m, in tetragonal QC system belong to another Laue class, of which the plane
elasticity can be simplified with the same process.
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5.3. Hexagonal QC system

1D hexagonal QCs divide into two Laue classes. The point groups 6, 6 and 6/m;, mmm, belong to one,
and 62,2;, 6mm, 6m2; and 6/mymm belong to another. Owing to the increase of symmetric elements of
hexagonal QCs in comparison with monoclinic QCs, for the point groups 6, 6 and 6/m;, mmmy, we have
also

Cii=Cyp, Ci3=Cpn, Cu=0=Css, 2C5=Ci—Crpy Cig=Co = Cs=Cy5=0;

(66)
K=K, K4=0; Ri=Ry, Rs=Rs, Ry=-R;, Rg=0.

Therefore the number of their non-zero elastic constants reduces to 11, namely Cy;, Cs3, Ca, Ci3, Cyy for
phonon fields; K3, K; for phason fields; R, R3, R4, Rs for coupling phonon—phason fields. Note that al-
though the number of two classes of QCs in Sections 5.2 and 5.3 is same, the components of them are
different, consequently the governing equation and general solution are also different.

For the point groups 62,2;,, 6mm, 6m2, and 6/mymm, besides (66), we have also R, = 0.

Substituting (66) into Egs. (25) and (34), we get

ay = das = Rg - K1C44, ay = a4 = 0, az = 2(R§ - K1C44); (67)

ci=cs5=—C1Ce, c2=0c4=0, c3=-2CCg. (68)
Substitution of (67) in Eq. (24) and (68) in Eq. (33), yields the governing equations as follows
V2ViF =0; V*V?G =0, (69)

where V2 = 07 + 03

Eq. (69) is the well-known bi-harmonic equation in classical elasticity. In this case, the characteristic
equation of (69) is p* + 2u> + 1 = 0. So u = +i, and F = 2Re[F (z) + zF(z)], G = 2Re[G(z) + 2G1(z)]. Fi(2)
and G;(z) are the well-known complex potential functions (Muskhelishvili, 1963). Furthermore, there are
many methods such as complex potential method, Riemann-Hilbert boundary value method and Fourier

transform method etc. to solve the bi-harmonic equation in classical elastic theory. Specially, under the
condition of CyuK; — Rs # 0, Eq. (24) gives the result obtained by Fan (1999).

6. An example

As an application of above theory, we investigate a typical example of dislocation in the orthorhombic
QCs. The dislocation of QCs is described by Burgers vector in higher dimensional space (Ding et al., 1998;
Bohsung and Trebin, 1989). The dislocation of 1D QCs can be expressed by Burgers vector in four—
dimensional space. Consider an infinitely long straight dislocation parallel to the quasi-periodic direction in
an infinite body of 1D orthorhombic QCs. Then, due to the symmetry of the QCs, the problem belongs to
plane elasticity. Assume a dislocation located at point z, in the x;—x,-plane and its Burgers vector is
(b1,b,,b3,b,). By means of the superposition principle, we have

(bl ) bZa b37 bL) = (bl ) Oa Oa 0) =+ (05 b27 07 0) =+ (Oa Oa b37 0) + (Oa Oa Oa bL)
From (Ding et al., 1998; Bohsung and Trebin, 1989), the dislocation conditions are given by

}{dul = bl, %duz = bz, %dm = b3, fdl) = bJ_, (70)
L L L L

where L denotes a Burgers contour surrounding the dislocation zy. Note that all four integrals are made in
physical space.
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We consider the case of vanishing boundary conditions in infinity only. Substituting Egs. (56) and (57)
into Eq. (70), through some derivation, yields

2 R R 2\7L13 1
fll(zl) _ [(C55 + §41M22b3 + ( 6_+ 5#2)b }1 —, (71)
dn(p; — 15)(RsCss — RsCaa) 21 — 29

[(Css 4 Caaid)bs + (Rs + Rsi3)b')i 1
4n(pi — 13)(RsCss — ReCas) 22—z

Sir(z) =

[(C11 + Ce623)b1 + (Cia + Ces) Jaba)]i 1

ai(&) = 4n( — 22)(Cri — Ceshi22)(Cia + Ces) & — 20

&(&) = [(C11 + Ce627)b1 + (Ciy + Ceg) by 1 (74)
252 T 4n(2 = J0)(Chy — Ceelr22)(Cia + Ceo) & — 20

Integrating Eqs. (71)—(74), then substituting them into Egs. (56) and (57), yields the displacement com-
ponents of phonon and phason fields for a dislocation in 1D orthorhombic QCs. By direct substitution of
Egs. (71)—(74) in Eqgs. (58)-(64), we will obtain all stress components of the elastic fields. So the problem of
dislocation of orthorhombic QCs is solved.

7. Conclusion and discussion

Now we summarize the main contents of this paper. First, plane elasticity theory of 1D QCs dealing with
various point groups is established, and the governing equations in terms of the displacement potential
functions are given. Second, general solutions expressed by complex variable functions are presented, which
provide the foundation of solving some boundary value problems of QCs. Third, as an application of the
general solutions, the dislocation problem in 1D orthorhombic QCs is investigated and its exact analytic
solutions are obtained. The result indicates that a straight dislocation in 1D QCs includes two parts: one
corresponds to purely edge type, and another corresponds to screw type of coupling phonon—phason fields.
The two parts exist independently, and are superimposed. Meanwhile, the stresses for a straight dislocation
still own one order singularity as in conventional elasticity, but are related also with the Burgers vector of
phason fields. This property shows that the dislocation of QCs results from the mistake of its atom
arrangement, because the phason stands for the atom arrangement of the QCs. Finally, as an open
problem, we don’t know if the case of the roots y, being real number is true for QCs. This is not the case for
ordinary elastic material (Sosa, 1991).
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