



ELSEVIER

International Journal of Solids and Structures 41 (2004) 3949–3959

INTERNATIONAL JOURNAL OF  
**SOLIDS and**  
**STRUCTURES**

[www.elsevier.com/locate/ijsolstr](http://www.elsevier.com/locate/ijsolstr)

# Governing equations and general solutions of plane elasticity of one-dimensional quasicrystals

Guan-Ting Liu <sup>a,b,\*</sup>, Tian-You Fan <sup>a</sup>, Rui-Ping Guo <sup>a</sup>

<sup>a</sup> Department of Physics, Beijing Institute of Technology, NanDaJie No.5, ZhongGuanCun, Beijing 100081, PR China

<sup>b</sup> Department of Mathematics, Inner Mongolia Normal University, Huhhot, Inner Mongolia 010022, PR China

Received 9 May 2003; received in revised form 17 February 2004

Available online 19 March 2004

## Abstract

Plane elasticity theory of one-dimensional quasicrystals dealing with all point groups is investigated systematically. The governing equations of elastic fields and their general solutions are derived by the complex variable functions method. As an example, the elastic fields of a straight dislocation along the quasiperiodic axis of an orthorhombic quasicrystal are calculated. The relevant singularity of the stress field for the dislocation in the quasicrystals is also discussed.

© 2004 Elsevier Ltd. All rights reserved.

**Keywords:** One-dimensional quasicrystals; Plane elasticity; Governing equation; General solution; Dislocation

## 1. Introduction

Many experiments and theoretical analyses have shown that quasicrystals(QCs) are new materials with a complex structure and unusual properties (Ronchetti, 1987; Socolar et al., 1986; Wang et al., 1997; Fan, 1999; Fan and Mai, 2003 etc.). The discovery of this new solid structure and the production of large single grained QCs in various alloy systems with thermodynamical stability brings about not only a profound revolution in traditional theory of crystals, but also a challenge to the mathematical methods on describing and analyzing the structure quantitatively. Among various QCs, one-dimensional (1D) QCs are of particular interest for the researchers after the success of Merlin et al. (1985) in growing model systems, where quasi-periodicity is built up. From experimental side, it has been possible to construct Fibonacci superlattices by epitaxial growths methods (Merlin et al., 1985) and some stable 1D QCs have been obtained (Yang et al., 1996). From theoretical side, Wang et al. (1997) derived all the possible point groups and space groups of 1D QCs; Liu et al. (1997) studied the physical properties of 1D QCs. However, comparatively less

\* Corresponding author. Address: Department of Physics, Beijing Institute of Technology, NanDaJie No.5, ZhongGuanCun, Beijing 100081, PR China. Tel.: +86-106-894-6285; fax: +86-106-891-1040.

E-mail address: [guantingliu@163.com](mailto:guantingliu@163.com) (G.-T. Liu).

works have been done on the theory of elasticity of 1D QCAs. The difficulty to tackle these types of problems comes from more elastic constants as well as coupling phonon–phason fields. Although there are some research papers on elasticity theory of 1D QCAs (Fan et al., 1999; Li and Fan, 1999; Peng and Fan, 2000; Peng et al., 2000; Peng and Fan, 2001; Liu et al., 2003), they involve only the elasticity theory of 1D hexagonal QCAs with point group 6mm, which is the simplest class of 1D QCAs. The present paper is devoted to general solutions of plane elasticity problems of 1D QCAs, dealing with all point groups and its application.

Defectiveness of quasi-crystalline materials was observed (Zhang and Urban, 1989). It is well known that defects influence physical and mechanical properties of solid materials greatly. Experiments showed that QCAs are quite brittle (Meng et al., 1994), and the brittle materials are sensitive to the defects. As an application of elastic theory of the QCAs, one typical example of dislocation is investigated and the exact analytic solutions of the elastic fields are given.

## 2. Basic theory

A 1D QCAs is defined as a three dimensional body of which the atom arrangement is periodic in a plane and quasi-periodic in the third direction. From Wang et al. (1997), there are 31 possible point groups in 1D QCAs, which are divided into ten Laue classes and six systems, namely, triclinic, monoclinic, orthorhombic, tetragonal, trigonal and hexagonal system. In the case of plane elasticity, the body of QCAs must have at least a symmetric plane. On the other hand, there exists at least one symmetric plane in all 1D QCAs systems except triclinic QCAs, so the investigation of the plane elasticity of 1D QCAs is meaningful and extensive. In this paper, we assume the unique quasi-periodic axis of 1D QCAs is axis  $x_3$  in a rectilinear coordinate system  $(x_1, x_2, x_3)$ .

A theoretical description of the deformed state of QCAs requires a combined consideration of interrelated phonon and phason fields. Owing to the existence of phason fields, the elasticity of QCAs is more complex than that of the conventional crystals. In QCAs, a phason displacement field  $v$  exists in addition to a phonon displacement field  $u(u_1, u_2, u_3)$ . They have mutual interaction.

Let  $\varepsilon_{11}, \varepsilon_{22}, \varepsilon_{33}, \varepsilon_{23}, \varepsilon_{31}, \varepsilon_{12}, w_{33}, w_{31}, w_{32}$  denote the phonon strains  $\varepsilon_{ij}$  and phason strains  $w_{3j}$ , and  $\sigma_{11}, \sigma_{22}, \sigma_{33}, \sigma_{23}, \sigma_{31}, \sigma_{12}, H_{33}, H_{31}, H_{32}$  denote the phonon stress  $\sigma_{ij}$  and phason stress  $H_{3j}$ , respectively. Then the generalized Hooke's laws of the elasticity problem of 1D QCAs are

$$\varepsilon_{ij} = C_{ijkl}\varepsilon_{kl} + R_{ij3l}w_{3l} \quad (i, j, k, l = 1, 2, 3), \quad (1)$$

$$H_{3j} = R_{kl3j}\varepsilon_{kl} + K_{3j3l}w_{3l} \quad (2)$$

and the static equilibrium equations in the absence of body forces are

$$\partial_1\sigma_{11} + \partial_2\sigma_{12} + \partial_3\sigma_{13} = 0, \quad \partial_1\sigma_{21} + \partial_2\sigma_{22} + \partial_3\sigma_{23} = 0, \quad (3)$$

$$\partial_1\sigma_{31} + \partial_2\sigma_{32} + \partial_3\sigma_{33} = 0, \quad \partial_1H_{31} + \partial_2H_{32} + \partial_3H_{33} = 0. \quad (4)$$

Besides, geometry equations are given by

$$\varepsilon_{ij} = \frac{1}{2}(\partial_j u_i + \partial_i u_j), \quad w_{3j} = \partial_j v, \quad i, j = 1, 2, 3. \quad (5)$$

Here we have used tensor notation and  $\partial_j = \partial/\partial x_j$ , the same hereafter.

Eqs. (1)–(5) are the basic relations of elasticity theory of 1D QCAs.

### 3. Plane elasticity and governing equation of monoclinic QC

For monoclinic QC, there are 25 elastic constants in all, namely,  $C_{1111}$ ,  $C_{2222}$ ,  $C_{3333}$ ,  $C_{1122}$ ,  $C_{1133}$ ,  $C_{1112}$ ,  $C_{2233}$ ,  $C_{2212}$ ,  $C_{3312}$ ,  $C_{3232}$ ,  $C_{3231}$ ,  $C_{3131}$ ,  $C_{1212}$  for phonon fields,  $K_{3333}$ ,  $K_{3131}$ ,  $K_{3232}$ ,  $K_{3132}$  for phason fields, and  $R_{1133}$ ,  $R_{2233}$ ,  $R_{3333}$ ,  $R_{1233}$ ,  $R_{2331}$ ,  $R_{2332}$ ,  $R_{3131}$ ,  $R_{3132}$  for coupling phonon–phason fields.

So the generalized Hooke's laws of monoclinic QC are given by

$$\begin{aligned}
 \sigma_{11} &= C_{11}\varepsilon_{11} + C_{12}\varepsilon_{22} + C_{13}\varepsilon_{33} + 2C_{16}\varepsilon_{12} + R_1w_{33}, \\
 \sigma_{22} &= C_{12}\varepsilon_{11} + C_{22}\varepsilon_{22} + C_{23}\varepsilon_{33} + 2C_{26}\varepsilon_{12} + R_2w_{33}, \\
 \sigma_{33} &= C_{13}\varepsilon_{11} + C_{23}\varepsilon_{22} + C_{33}\varepsilon_{33} + 2C_{36}\varepsilon_{12} + R_3w_{33}, \\
 \sigma_{23} &= \sigma_{32} = 2C_{44}\varepsilon_{23} + 2C_{45}\varepsilon_{31} + R_4w_1 + R_5w_{32}, \\
 \sigma_{31} &= \sigma_{13} = 2C_{45}\varepsilon_{23} + 2C_{55}\varepsilon_{31} + R_6w_1 + R_7w_{32}, \\
 \sigma_{12} &= \sigma_{21} = C_{16}\varepsilon_{11} + C_{26}\varepsilon_{22} + C_{36}\varepsilon_{33} + 2C_{66}\varepsilon_{12} + R_8w_{33}, \\
 H_{31} &= 2R_4\varepsilon_{23} + 2R_6\varepsilon_{31} + K_1w_{31} + K_4w_{32}, \\
 H_{32} &= 2R_5\varepsilon_{23} + 2R_7\varepsilon_{31} + K_4w_{31} + K_2w_{32}, \\
 H_{33} &= R_1\varepsilon_{11} + R_2\varepsilon_{22} + R_3\varepsilon_{33} + 2R_8\varepsilon_{12} + K_3w_{33}.
 \end{aligned} \tag{6}$$

Here and subsequently we write the elastic constant  $C_{ijkl}$  in a contracted matrix notation  $C_{pq}$  as was done in the case of conventional crystal, and we have  $K_{3131} = K_1$ ,  $K_{3232} = K_2$ ,  $K_{3333} = K_3$ ,  $K_{3132} = K_4$ ,  $R_{1133} = R_1$ ,  $R_{2233} = R_2$ ,  $R_{3333} = R_3$ ,  $R_{2331} = R_4$ ,  $R_{2332} = R_5$ ,  $R_{3131} = R_6$ ,  $R_{3132} = R_7$  and  $R_{1233} = R_8$ .

When the direction of defects such as infinitely long straight dislocations and cracks etc. is parallel to the quasi-periodic axis of 1D QC, the geometry properties of the materials will not change along the quasi-periodic direction. If we take quasi-periodic axis of 1D QC for axis  $x_3$ , then

$$\frac{\partial(\ )}{\partial x_3} = 0, \tag{7}$$

i.e. all fields variables depend only on coordinates  $x_1$  and  $x_2$ . This is so-called plane elasticity (Fan, 1999).

Substitution of Eq. (7) in Eqs. (3)–(6) leads to two separate problems as follows:

#### Problem I

$$\sigma_{23} = \sigma_{32} = 2C_{44}\varepsilon_{23} + 2C_{45}\varepsilon_{31} + R_4w_{31} + R_5w_{32}, \tag{8}$$

$$\sigma_{31} = \sigma_{13} = 2C_{45}\varepsilon_{23} + 2C_{55}\varepsilon_{31} + R_6w_{31} + R_7w_{32}, \tag{9}$$

$$H_{31} = 2R_4\varepsilon_{23} + 2R_6\varepsilon_{31} + K_1w_{31} + K_4w_{32}, \tag{10}$$

$$H_{32} = 2R_5\varepsilon_{23} + 2R_7\varepsilon_{31} + K_4w_{31} + K_2w_{32}, \tag{11}$$

$$\varepsilon_{3j} = \varepsilon_{j3} = \frac{1}{2}\partial_j u_3, \quad w_{3j} = \partial_j v, \quad j = 1, 2, \tag{12}$$

$$\partial_1 \sigma_{31} + \partial_2 \sigma_{32} = 0, \quad \partial_1 H_{31} + \partial_2 H_{32} = 0. \tag{13}$$

This is an anti-plane elasticity problem for coupling phonon–phason fields.

## Problem II

$$\sigma_{11} = C_{11}\varepsilon_{11} + C_{12}\varepsilon_{22} + 2C_{16}\varepsilon_{12}, \quad (14)$$

$$\sigma_{22} = C_{12}\varepsilon_{11} + C_{22}\varepsilon_{22} + 2C_{26}\varepsilon_{12}, \quad (15)$$

$$\sigma_{12} = \sigma_{21} = C_{16}\varepsilon_{11} + C_{26}\varepsilon_{22} + 2C_{66}\varepsilon_{12}, \quad (16)$$

$$\sigma_{33} = C_{13}\varepsilon_{11} + C_{23}\varepsilon_{22} + 2C_{36}\varepsilon_{12}, \quad (17)$$

$$H_{33} = R_1\varepsilon_{11} + R_2\varepsilon_{22} + 2R_8\varepsilon_{12}, \quad (18)$$

$$\varepsilon_{ij} = \frac{1}{2}(\partial_j u_i + \partial_i u_j) \quad i, j = 1, 2, \quad (19)$$

$$\partial_1 \sigma_{11} + \partial_2 \sigma_{12} = 0, \quad \partial_1 \sigma_{21} + \partial_2 \sigma_{22} = 0. \quad (20)$$

This is similar to a plane strain problem for monoclinic crystal, but has an extra Eq. (18) here.

For Problem I, substituting Eq. (12) into Eqs. (8)–(11), then into Eq. (13), yields the equilibrium equations in terms of displacements as follows:

$$(C_{55}\partial_1^2 + C_{44}\partial_2^2 + 2C_{45}\partial_1\partial_2)u_3 + [R_6\partial_1^2 + R_5\partial_2^2 + (R_4 + R_7)\partial_1\partial_2]v = 0, \quad (21)$$

$$[R_6\partial_1^2 + R_5\partial_2^2 + (R_4 + R_7)\partial_1\partial_2]u_3 + (K_1\partial_1^2 + K_2\partial_2^2 + 2K_4\partial_1\partial_2)v = 0. \quad (22)$$

This is a set of partial differential equations for coupling phonon–phason fields, which is very different from that of conventional crystals. It seems to be extremely difficult to find the solution by means of direct integration due to the complexity of the equations. Now we introduce a displacement potential function to simplify above equations. Let

$$u_3 = [R_6\partial_1^2 + R_5\partial_2^2 + (R_4 + R_7)\partial_1\partial_2]F, \quad v = -(C_{55}\partial_1^2 + C_{44}\partial_2^2 + 2C_{45}\partial_1\partial_2)F, \quad (23)$$

where  $F(x_1, x_2)$  is the displacement potential function introduced. It is clear that Eq. (21) is satisfied.

Substituting Eq. (23) into Eq. (22), we have

$$(a_1\partial_1^4 + a_2\partial_1^3\partial_2 + a_3\partial_1^2\partial_2^2 + a_4\partial_1\partial_2^3 + a_5\partial_2^4)F = 0, \quad (24)$$

with constants

$$\begin{aligned} a_1 &= R_6^2 - K_1 C_{55}, \quad a_2 = 2[R_6(R_4 + R_7) - K_1 C_{45} - K_4 C_{55}], \\ a_3 &= 2R_5 R_6 + (R_4 + R_7)^2 - K_1 C_{44} - K_2 C_{55} - 4K_4 C_{45}, \\ a_4 &= 2[R_5(R_4 + R_7) - K_2 C_{45} - K_4 C_{44}], \quad a_5 = R_5^2 - K_2 C_{44}. \end{aligned} \quad (25)$$

Eq. (24) indicates that the terminal governing equation of Problem I is a fourth-order partial differential equation. Furthermore, substitution of Eq. (23) in Eqs. (8)–(11) yields

$$\sigma_{32} = [(R_6 C_{45} - R_4 C_{55})\partial_1^3 + (R_6 C_{44} - R_4 C_{45} + R_7 C_{45} - R_5 C_{55})\partial_1^2\partial_2 + (R_7 C_{44} - R_5 C_{45})\partial_1\partial_2^2]F, \quad (26)$$

$$\sigma_{31} = [(R_5 C_{45} - R_7 C_{44})\partial_2^3 + (R_5 C_{55} - R_7 C_{45} + R_4 C_{45} - R_6 C_{44})\partial_2^2\partial_1 + (R_4 C_{55} - R_6 C_{45})\partial_2\partial_1^2]F, \quad (27)$$

$$H_{32} = [R_6\hat{\partial}_1^2 + R_5\hat{\partial}_2^2 + (R_4 + R_7)\hat{\partial}_1\hat{\partial}_2](R_5\hat{\partial}_2 + R_7\hat{\partial}_1)F - (C_{55}\hat{\partial}_1^2 + C_{44}\hat{\partial}_2^2 + 2C_{45}\hat{\partial}_1\hat{\partial}_2)(K_4\hat{\partial}_1 + K_2\hat{\partial}_2)F, \quad (28)$$

$$H_{31} = [R_6\hat{\partial}_1^2 + R_5\hat{\partial}_2^2 + (R_4 + R_7)\hat{\partial}_1\hat{\partial}_2](R_4\hat{\partial}_2 + R_6\hat{\partial}_1)F - (C_{55}\hat{\partial}_1^2 + C_{44}\hat{\partial}_2^2 + 2C_{45}\hat{\partial}_1\hat{\partial}_2)(K_1\hat{\partial}_1 + K_4\hat{\partial}_2)F. \quad (29)$$

These are the representations of stress components in terms of the displacement potential function corresponding to Problem I.

For Problem II, substituting Eq. (19) into Eqs. (14)–(16), then substituting the obtained results into Eq. (20), yields the equilibrium equations in terms of displacements as following:

$$(C_{11}\hat{\partial}_1^2 + C_{66}\hat{\partial}_2^2 + 2C_{16}\hat{\partial}_1\hat{\partial}_2)u_1 + [C_{16}\hat{\partial}_1^2 + C_{26}\hat{\partial}_2^2 + (C_{12} + C_{66})\hat{\partial}_1\hat{\partial}_2]u_2 = 0, \quad (30)$$

$$[C_{16}\hat{\partial}_1^2 + C_{26}\hat{\partial}_2^2 + (C_{12} + C_{66})\hat{\partial}_1\hat{\partial}_2]u_1 + (C_{66}\hat{\partial}_1^2 + C_{22}\hat{\partial}_2^2 + 2C_{26}\hat{\partial}_1\hat{\partial}_2)u_2 = 0. \quad (31)$$

Like Problem I, we introduce a displacement potential function to simplify them. Let

$$u_1 = [C_{16}\hat{\partial}_1^2 + C_{26}\hat{\partial}_2^2 + (C_{12} + C_{66})\hat{\partial}_1\hat{\partial}_2]G, \quad u_2 = -(C_{11}\hat{\partial}_1^2 + C_{66}\hat{\partial}_2^2 + 2C_{16}\hat{\partial}_1\hat{\partial}_2)G, \quad (32)$$

where  $G(x_1, x_2)$  is another displacement potential function introduced. It is clear that Eq. (30) is satisfied. Substituting Eq. (32) into Eq. (31), we have

$$(c_1\hat{\partial}_1^4 + c_2\hat{\partial}_1^3\hat{\partial}_2 + c_3\hat{\partial}_1^2\hat{\partial}_2^2 + c_4\hat{\partial}_1\hat{\partial}_2^3 + c_5\hat{\partial}_2^4)G = 0, \quad (33)$$

with constants

$$\begin{aligned} c_1 &= C_{16}^2 - C_{11}C_{66}, & c_2 &= 2(C_{16}C_{12} - C_{11}C_{26}), \\ c_3 &= C_{12}^2 - 2C_{16}C_{26} + 2C_{12}C_{66} - C_{11}C_{22}, \\ c_4 &= 2(C_{26}C_{12} - C_{16}C_{22}), & c_5 &= C_{26}^2 - C_{22}C_{66}. \end{aligned} \quad (34)$$

Eq. (33) indicates that the terminal governing equations of Problem II is also a fourth-order partial differential equation. Furthermore, substitution of Eq. (32) in Eqs. (14)–(16) yields

$$\sigma_{11} = [(C_{11}C_{66} - C_{16}^2)\hat{\partial}_1^2\hat{\partial}_2 + (C_{11}C_{26} - C_{16}C_{12})\hat{\partial}_1\hat{\partial}_2^2 + (C_{16}C_{26} - C_{12}C_{66})\hat{\partial}_2^3]G, \quad (35)$$

$$\sigma_{22} = [(C_{12}C_{16} - C_{11}C_{26})\hat{\partial}_1^3 + (C_{12}^2 + C_{12}C_{66} - C_{16}C_{26} - C_{11}C_{22})\hat{\partial}_1^2\hat{\partial}_2 - 2C_{16}C_{26}\hat{\partial}_1^2\hat{\partial}_2 + (C_{26}^2 - C_{22}C_{66})\hat{\partial}_2^3]G, \quad (36)$$

$$\sigma_{12} = [(C_{16}^2 - C_{11}C_{26})\hat{\partial}_1^3 + (C_{12}C_{16} - C_{11}C_{26})\hat{\partial}_1^2\hat{\partial}_2 + (C_{12}C_{66} - C_{16}C_{26})\hat{\partial}_1\hat{\partial}_2^2]G. \quad (37)$$

Similarly,  $\sigma_{33}$  and  $H_{33}$  can also be obtained, which are omitted here because we consider the stresses in the  $x_1$ – $x_2$ -plane only.

These are the representations of stress components in terms of the displacement potential function corresponding to Problem II.

Hence, the plane elasticity of 1D monoclinic QCs is governed by two fourth-order partial differential equations (24) and (33).

#### 4. General solution for monoclinic QCs

Following Sosa (1991) and Lekhnitskii (1963), the solution of the fourth-order partial differential equation (24) can be represented by two analytic functions  $F_k(z_k)$  ( $k = 1, 2$ ) as following

$$F(x_1, x_2) = 2\operatorname{Re} \sum_{k=1}^2 F_k(z_k), \quad z_k = x_1 + \mu_k x_2, \quad (38)$$

where  $\operatorname{Re}$  denotes the real part of corresponding complex expression;  $\mu_k = \alpha_k + i\beta_k$  (with  $i = \sqrt{-1}$ ,  $k = 1, 2$ ) are distinct complex parameters to be determined by the characteristic equation

$$a_5\mu^4 + a_4\mu^3 + a_3\mu^2 + a_2\mu + a_1 = 0, \quad (39)$$

and  $\mu_1 \neq \mu_2$ .

If the roots of Eq. (39) are multi-roots, namely  $\mu_1 = \mu_2$ , we have

$$F(x_1, x_2) = 2\operatorname{Re}[F_1(z_1) + \overline{z_1}F_2(z_1)], \quad z_1 = x_1 + \mu_1 x_2. \quad (40)$$

The  $\mu_k$  ( $k = 1, 2$ ) can be, in principle, calculated analytically when the elastic constants of the QC's are given.

Substitution of Eq. (38) in Eqs. (23) and (26)–(29) yields

$$u_3 = 2\operatorname{Re} \sum_{k=1}^2 [R_6 + (R_4 + R_7)\mu_k + R_5\mu_k^2]f_k(z_k), \quad (41)$$

$$v = -2\operatorname{Re} \sum_{k=1}^2 (C_{55} + 2C_{45}\mu_k + C_{44}\mu_k^2)f_k(z_k), \quad (42)$$

$$\sigma_{32} = 2\operatorname{Re} \sum_{k=1}^2 [R_6C_{45} - R_4C_{55} + (R_6C_{44} - R_4C_{45} + R_7C_{45} - R_5C_{55})\mu_k + (R_7C_{44} - R_5C_{45})\mu_k^2]f'_k(z_k), \quad (43)$$

$$\sigma_{31} = 2\operatorname{Re} \sum_{k=1}^2 [R_4C_{55} - R_6C_{45} + (R_5C_{55} + R_4C_{45} - R_7C_{45} - R_6C_{44})\mu_k + (R_5C_{45} - R_7C_{44})\mu_k^2]\mu_k f'_k(z_k), \quad (44)$$

$$H_{32} = 2\operatorname{Re} \sum_{k=1}^2 [(R_7 + R_5\mu_k)(R_6 + R_4\mu_k + R_7\mu_k + R_5\mu_k^2) - (K_4 + K_2\mu_k)(C_{55} + 2C_{45}\mu_k + C_{44}\mu_k^2)]f'_k(z_k), \quad (45)$$

$$H_{31} = 2\operatorname{Re} \sum_{k=1}^2 [(R_6 + R_4\mu_k)(R_6 + R_4\mu_k + R_7\mu_k + R_5\mu_k^2) - (K_1 + K_4\mu_k)(C_{55} + 2C_{45}\mu_k + C_{44}\mu_k^2)]f'_k(z_k), \quad (46)$$

where  $f_k(z_k) = \partial_{z_k}^2 F_k(z_k) = F''_k(z_k)$ .

Similarly,

$$G(x_1, x_2) = 2\operatorname{Re} \sum_{k=1}^2 G_k(\xi_k), \quad \xi_k = x_1 + \lambda_k x_2, \quad (47)$$

where  $\xi_k = \alpha_{k1} + i\beta_{k1}$  (with  $i = \sqrt{-1}$ ,  $k = 1, 2$ ) are also distinct complex parameters to be determined by the characteristic equation

$$c_5\lambda^4 + c_4\lambda^3 + c_3\lambda^2 + c_2\lambda + c_1 = 0. \quad (48)$$

And

$$u_1 = 2\operatorname{Re} \sum_{k=1}^2 [C_{16} + (C_{12} + C_{66})\lambda_k + C_{26}\lambda_k^2]g_k(\xi_k), \quad (49)$$

$$u_2 = -2\operatorname{Re} \sum_{k=1}^2 (C_{11} + 2C_{16}\lambda_k + C_{66}\lambda_k^2)g_k(\xi_k), \quad (50)$$

$$\sigma_{11} = 2\operatorname{Re} \sum_{k=1}^2 [C_{66}C_{11} - C_{16}^2 + (C_{11}C_{26} - C_{12}C_{16})\lambda_k + (C_{16}C_{26} - C_{12}C_{66})\lambda_k^2]\lambda_k g'_k(\xi_k), \quad (51)$$

$$\begin{aligned} \sigma_{22} = 2\operatorname{Re} \sum_{k=1}^2 & [C_{16}C_{12} - C_{11}C_{26} + (C_{26}^2 + C_{12}C_{66} - C_{16}C_{26} - C_{11}C_{22})\lambda_k - 2C_{16}C_{22}\lambda_k^2 \\ & + (C_{26}^2 - C_{22}C_{66})\lambda_k^3]g'_k(\xi_k), \end{aligned} \quad (52)$$

$$\sigma_{12} = 2\operatorname{Re} \sum_{k=1}^2 [C_{16}^2 - C_{11}C_{66} + (C_{16}C_{12} - C_{11}C_{26})\lambda_k + (C_{12}C_{66} - C_{16}C_{26})\lambda_k^2]g'_k(\xi_k), \quad (53)$$

where  $g_k(\xi_k) = \partial_{\xi_k}^2 G_k(\xi_k) = G''_k(\xi_k)$ .

These are the complex variable representations of displacement and stress components of phonon fields and phason fields in 1D monoclinic QC's. They are so-called general solutions of plane elasticity of 1D monoclinic QC's. With this general solutions, it is very convenient to give the special solution of some dislocation and crack problems of 1D QC's.

## 5. Other 1D QC systems

### 5.1. Orthorhombic QC system

In the sequel, the meaning of symbol for the point groups is the same as in (Wang et al., 1997). Orthorhombic QC's comprise the point groups  $2_h2_h2$ ,  $mm2$ ,  $2_hmm_h$  and  $mmm_h$ , which belong to one Laue class. Owing to the increase of symmetric elements of orthorhombic QC's in comparison with monoclinic QC's, one has also

$$C_{16} = C_{26} = C_{36} = C_{45} = K_4 = R_4 = R_7 = R_8 = 0. \quad (54)$$

Therefore the number of non-zero elastic constants of orthorhombic QC's reduces to 17, namely,  $C_{11}$ ,  $C_{22}$ ,  $C_{33}$ ,  $C_{12}$ ,  $C_{13}$ ,  $C_{23}$ ,  $C_{44}$ ,  $C_{55}$ ,  $C_{66}$  for phonon fields;  $K_1$ ,  $K_2$ ,  $K_3$  for phason fields;  $R_1$ ,  $R_2$ ,  $R_3$ ,  $R_5$ ,  $R_6$  for coupling phonon–phason fields.

Substituting (54) into Eqs. (25) and (34), we find that  $a_1$  and  $a_5$  are the same as in (25), and

$$\begin{aligned} a_2 = a_4 &= 0, \quad a_3 = 2R_5R_6 - K_1C_{44} - K_2C_{55}, \\ c_1 &= -C_{11}C_{66}, \quad c_2 = c_4 = 0, \quad c_5 = -C_{22}C_{66}, \\ c_3 &= C_{12}^2 + 2C_{12}C_{66} - C_{11}C_{22}. \end{aligned} \quad (55)$$

Furthermore, all fields variables are simplified as follows

$$u_1 = 2(C_{12} + C_{66})\operatorname{Re} \sum_{k=1}^2 \lambda_k g_k(\xi_k), \quad u_2 = -2\operatorname{Re} \sum_{k=1}^2 (C_{11} + C_{66}\lambda_k^2) g_k(\xi_k), \quad (56)$$

$$u_3 = 2\operatorname{Re} \sum_{k=1}^2 (R_6 + R_5\mu_k^2) f_k(z_k), \quad v = -2\operatorname{Re} \sum_{k=1}^2 (C_{55} + C_{44}\mu_k^2) f_k(z_k), \quad (57)$$

$$\sigma_{11} = 2\operatorname{Re} \sum_{k=1}^2 (C_{66}C_{11} - C_{12}C_{66}\lambda_k^2) \lambda_k g'_k(\xi_k), \quad (58)$$

$$\sigma_{22} = 2\operatorname{Re} \sum_{k=1}^2 [(C_{12}^2 + C_{12}C_{66} - C_{11}C_{22}) - C_{22}C_{66}\lambda_k^2] \lambda_k g'_k(\xi_k), \quad (59)$$

$$\sigma_{12} = 2\operatorname{Re} \sum_{k=1}^2 (-C_{11}C_{66} + C_{12}C_{66}\lambda_k^2) g'_k(\xi_k), \quad (60)$$

$$\sigma_{32} = 2\operatorname{Re} \sum_{k=1}^2 (R_6C_{44} - R_5C_{55}) \mu_k f'_k(z_k), \quad (61)$$

$$\sigma_{31} = 2(R_5C_{55} - R_6C_{44})\operatorname{Re} \sum_{k=1}^2 \mu_k^2 f'_k(z_k), \quad (62)$$

$$H_2 = 2\operatorname{Re} \sum_{k=1}^2 [R_5R_6 - K_2C_{55} + (R_5^2 - K_2C_{44})\mu_k^2] \mu_k f'_k(z_k), \quad (63)$$

$$H_1 = 2\operatorname{Re} \sum_{k=1}^2 [R_6^2 - K_1C_{55} + (R_5R_6 - K_1C_{44})\mu_k^2] f'_k(z_k). \quad (64)$$

## 5.2. Tetragonal QC system

1D tetragonal QCs divide into two Laue classes. Point groups  $\bar{4}2_h m$ ,  $4mm$ ,  $42_h 2_h$  and  $4/m_h mm$  in the QCs belong to one Laue class. Owing to the increase of new symmetric elements of tetragonal QCs, besides (54), one has also

$$C_{11} = C_{22}, \quad C_{13} = C_{23}, \quad C_{44} = C_{55}, \quad K_1 = K_2, \quad R_1 = R_2, \quad R_5 = R_6. \quad (65)$$

Therefore the number of non-zero elastic constants of 1D tetragonal QCs reduces to 11.

Substituting (65) into Eqs. (55)–(64), simplified forms of the governing equations and general solutions will be obtained.

Point groups  $\bar{4}$ ,  $4$  and  $4/m_h$  in tetragonal QC system belong to another Laue class, of which the plane elasticity can be simplified with the same process.

### 5.3. Hexagonal QC system

1D hexagonal QC s divide into two Laue classes. The point groups  $6, \bar{6}$  and  $6/m_h$   $mmm_h$  belong to one, and  $62_h2_h, 6mm, 6m2_h$  and  $6/m_hmm$  belong to another. Owing to the increase of symmetric elements of hexagonal QC s in comparison with monoclinic QC s, for the point groups  $6, \bar{6}$  and  $6/m_h$   $mmm_h$ , we have also

$$\begin{aligned} C_{11} &= C_{22}, & C_{13} &= C_{23}, & C_{44} &= C_{55}, & 2C_{66} &= C_{11} - C_{12}, & C_{16} &= C_{26} = C_{36} = C_{45} = 0; \\ K_1 &= K_2, & K_4 &= 0; & R_1 &= R_2, & R_5 &= R_6, & R_4 &= -R_7, & R_8 &= 0. \end{aligned} \quad (66)$$

Therefore the number of their non-zero elastic constants reduces to 11, namely  $C_{11}, C_{33}, C_{12}, C_{13}, C_{44}$  for phonon fields;  $K_3, K_1$  for phason fields;  $R_1, R_3, R_4, R_6$  for coupling phonon–phason fields. Note that although the number of two classes of QC s in Sections 5.2 and 5.3 is same, the components of them are different, consequently the governing equation and general solution are also different.

For the point groups  $62_h2_h, 6mm, \bar{6}m2_h$  and  $6/m_hmm$ , besides (66), we have also  $R_4 = 0$ .

Substituting (66) into Eqs. (25) and (34), we get

$$a_1 = a_5 = R_5^2 - K_1 C_{44}, \quad a_2 = a_4 = 0, \quad a_3 = 2(R_5^2 - K_1 C_{44}); \quad (67)$$

$$c_1 = c_5 = -C_{11} C_{66}, \quad c_2 = c_4 = 0, \quad c_3 = -2C_{11} C_{66}. \quad (68)$$

Substitution of (67) in Eq. (24) and (68) in Eq. (33), yields the governing equations as follows

$$\nabla^2 \nabla^2 F = 0; \quad \nabla^2 \nabla^2 G = 0, \quad (69)$$

where  $\nabla^2 = \partial_1^2 + \partial_2^2$ .

Eq. (69) is the well-known bi-harmonic equation in classical elasticity. In this case, the characteristic equation of (69) is  $\mu^4 + 2\mu^2 + 1 = 0$ . So  $\mu = \pm i$ , and  $F = 2\text{Re}[F_1(z) + \bar{z}F_2(z)]$ ,  $G = 2\text{Re}[G_1(z) + \bar{z}G_2(z)]$ .  $F_i(z)$  and  $G_i(z)$  are the well-known complex potential functions (Muskhelishvili, 1963). Furthermore, there are many methods such as complex potential method, Riemann–Hilbert boundary value method and Fourier transform method etc. to solve the bi-harmonic equation in classical elastic theory. Specially, under the condition of  $C_{44}K_1 - R_5 \neq 0$ , Eq. (24) gives the result obtained by Fan (1999).

## 6. An example

As an application of above theory, we investigate a typical example of dislocation in the orthorhombic QC s. The dislocation of QC s is described by Burgers vector in higher dimensional space (Ding et al., 1998; Bohsung and Trebin, 1989). The dislocation of 1D QC s can be expressed by Burgers vector in four-dimensional space. Consider an infinitely long straight dislocation parallel to the quasi-periodic direction in an infinite body of 1D orthorhombic QC s. Then, due to the symmetry of the QC s, the problem belongs to plane elasticity. Assume a dislocation located at point  $z_0$  in the  $x_1$ – $x_2$ -plane and its Burgers vector is  $(b_1, b_2, b_3, b_{\perp})$ . By means of the superposition principle, we have

$$(b_1, b_2, b_3, b_{\perp}) = (b_1, 0, 0, 0) + (0, b_2, 0, 0) + (0, 0, b_3, 0) + (0, 0, 0, b_{\perp}).$$

From (Ding et al., 1998; Bohsung and Trebin, 1989), the dislocation conditions are given by

$$\oint_L du_1 = b_1, \quad \oint_L du_2 = b_2, \quad \oint_L du_3 = b_3, \quad \oint_L dv = b_{\perp}, \quad (70)$$

where  $L$  denotes a Burgers contour surrounding the dislocation  $z_0$ . Note that all four integrals are made in physical space.

We consider the case of vanishing boundary conditions in infinity only. Substituting Eqs. (56) and (57) into Eq. (70), through some derivation, yields

$$f'_1(z_1) = -\frac{[(C_{55} + C_{44}\mu_2^2)b_3 + (R_6 + R_5\mu_2^2)b^\perp]i}{4\pi(\mu_1^2 - \mu_2^2)(R_5C_{55} - R_6C_{44})} \frac{1}{z_1 - z_0}, \quad (71)$$

$$f'_2(z_2) = \frac{[(C_{55} + C_{44}\mu_1^2)b_3 + (R_6 + R_5\mu_1^2)b^\perp]i}{4\pi(\mu_1^2 - \mu_2^2)(R_5C_{55} - R_6C_{44})} \frac{1}{z_2 - z_0}, \quad (72)$$

$$g'_1(\xi_1) = -\frac{[(C_{11} + C_{66}\lambda_2^2)b_1 + (C_{12} + C_{66})\lambda_2 b_2]i}{4\pi(\lambda_1 - \lambda_2)(C_{11} - C_{66}\lambda_1\lambda_2)(C_{12} + C_{66})} \frac{1}{\xi_1 - z_0}, \quad (73)$$

$$g'_2(\xi_2) = \frac{[(C_{11} + C_{66}\lambda_1^2)b_1 + (C_{12} + C_{66})\lambda_1 b_2]i}{4\pi(\lambda_1 - \lambda_2)(C_{11} - C_{66}\lambda_1\lambda_2)(C_{12} + C_{66})} \frac{1}{\xi_2 - z_0}. \quad (74)$$

Integrating Eqs. (71)–(74), then substituting them into Eqs. (56) and (57), yields the displacement components of phonon and phason fields for a dislocation in 1D orthorhombic QC. By direct substitution of Eqs. (71)–(74) in Eqs. (58)–(64), we will obtain all stress components of the elastic fields. So the problem of dislocation of orthorhombic QC is solved.

## 7. Conclusion and discussion

Now we summarize the main contents of this paper. First, plane elasticity theory of 1D QC dealing with various point groups is established, and the governing equations in terms of the displacement potential functions are given. Second, general solutions expressed by complex variable functions are presented, which provide the foundation of solving some boundary value problems of QC. Third, as an application of the general solutions, the dislocation problem in 1D orthorhombic QC is investigated and its exact analytic solutions are obtained. The result indicates that a straight dislocation in 1D QC includes two parts: one corresponds to purely edge type, and another corresponds to screw type of coupling phonon–phason fields. The two parts exist independently, and are superimposed. Meanwhile, the stresses for a straight dislocation still own one order singularity as in conventional elasticity, but are related also with the Burgers vector of phason fields. This property shows that the dislocation of QC results from the mistake of its atom arrangement, because the phason stands for the atom arrangement of the QC. Finally, as an open problem, we don't know if the case of the roots  $\mu_k$  being real number is true for QC. This is not the case for ordinary elastic material (Sosa, 1991).

## Acknowledgements

We would like to express our sincerely thanks to reviewers for their helpful and constructive suggestions. The project is supported by the National Natural Science Foundation of China under Grant No. 10372016, Inner Mongolia Natural Science Foundation under Grant No. 200308020101 and the Key Program of Scientific Research Foundation for Youth of Inner Mongolia Normal University under Grant No. QNZ00111.

## References

Bohsung, J., Trebin, H.R., 1989. In: Jaric, M.J. (Ed.), *Aperiodicity and Order*. Vol. 2, Academic Press Inc., p. 183.

Ding, D.H., Wang, R.H., Yang, W.G., et al., 1998. Elasticity, plasticity and dislocation of quasicrystals. *Prog. in phys.* 18 (3), 223–260 (in Chinese).

Fan, T.Y., 1999. The mathematical theory of elasticity of quasicrystals and applications. Beijing Institute of Technology Press, Beijing (in Chinese).

Fan, T.Y., Li, X.F., Sun, Y.F., 1999. A moving screw dislocation in a one dimensional hexagonal quasicrystal. *Chin. Phys.* 8, 288–295.

Fan, T.Y., Mai, Y.W., 2003. Elasticity theory, fracture mechanics and some relevant thermal properties of quasicrystalline materials, quasicrystal. *Appl. Mech. Rev.*, in press.

Lekhnitskii, S.G., 1963. *Theory of elasticity of an anisotropic body*. Holden-Day, San Francisco.

Li, X.F., Fan, T.Y., 1999. A straight dislocation in one dimensional hexagonal quasicrystals. *Phys. Stat. Sol. (b)* 212, 19–26.

Liu, G.T., Guo, R.P., Fan, T.Y., 2003. On interaction between crack and dislocations in one dimensional hexagonal quasicrystals. *Chin. Phys.* 12 (10), 1149–1155.

Liu, Y.Y., Fu, X.J., Dong, X.Q., 1997. Physical properties of one dimensional quasicrystals. *Prog. Phys.* 17, 1–63 (in Chinese).

Meng, X.M., Tong, B.Y., Wu, Y.K., 1994. Mechanical properties of  $Al_{65}Cu_{20}Co_{15}$  quasicrystals. *Acta Metal Sinica* 30 (1), 60–64 (in Chinese).

Merlin, R., Bajema, K., Clarke, R., et al., 1985. Quasiperiodic GaAs-AlAs heterostructures. *Phys. Rev. Lett.* 55, 1768–1770.

Muskhelishvili, N.I., 1963. Some basic problem of the mathematical theory of elasticity. Noordhoff, Groningen.

Peng, Y.Z., Fan, T.Y., 2000. Elastic theory of 1D quasiperiodic stacking of 2D crystals. *J. Phys.: Condens. Matter.* 12, 9381–9387.

Peng, Y.Z., Fan, T.Y., 2001. Crack and indentation problems for one dimensional hexagonal quasicrystals. *Euro. Phys. Jour. B* 21, 39–44.

Peng, Y.Z., Fan, T.Y., et al., 2000. Perturbation method for solving elastic problems of one dimensional hexagonal quasicrystals. *Jour. Phys.: Condensed Matter.* 12, 9381–9387.

Ronchetti, M., 1987. Quasicrystals, an introduction overview. *Phil. Mag.* 56, 237–249.

Socolar, J.E.S., Lubensky, T.C., Steinhardt, P.J., 1986. Phonons, phason and dislocations in quasicrystals. *Phys. Rev. B* 34 (5), 3345–3360.

Sosa, H., 1991. Plane problems in piezoelectric media with defects. *Int. J. Solids Struct.* 28, 491–505.

Wang, R.H., Yang, W.G., Hu, C.Z., et al., 1997. Point and space groups and elastic behaviors of one dimensional quasicrystals. *J. Phys.: Condens. Matter* 9, 2411–2422.

Yang, W.G., Wang, R.H., Gui, J., et al., 1996. Some new stable one dimensional quasicrystals in  $Al_{65}Cu_{20}Fe_{10}Mn_5$  alloy. *Phil. Mag. Lett.* 74, 357–366.

Zhang, Z., Urban, K., 1989. Transmission electron microscope observation of dislocation and stacking faults in a decagonal Al–Cu–Co alloy. *Phil. Mag. Lett.* 60 (1), 97–102.