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Abstract

Plane elasticity theory of one-dimensional quasicrystals dealing with all point groups is investigated systematically.

The governing equations of elastic fields and their general solutions are derived by the complex variable functions

method. As an example, the elastic fields of a straight dislocation along the quasiperiodic axis of an orthorhombic

quasicystal are calculated. The relevant singularity of the stress field for the dislocation in the quasicrystals is also

discussed.

� 2004 Elsevier Ltd. All rights reserved.

Keywords: One-dimensional quasicrystals; Plane elasticity; Governing equation; General solution; Dislocation
1. Introduction

Many experiments and theoretical analyses have shown that quasicrystals(QCs) are new materials with a

complex structure and unusual properties (Ronchetti, 1987; Socolar et al., 1986; Wang et al., 1997; Fan,

1999; Fan and Mai, 2003 etc.). The discovery of this new solid structure and the production of large single

grained QCs in various alloy systems with thermodynamical stability brings about not only a profound

revolution in traditional theory of crystals, but also a challenge to the mathematical methods on describing

and analyzing the structure quantitatively. Among various QCs, one-dimensional (1D) QCs are of par-

ticular interest for the researchers after the success of Merlin et al. (1985) in growing model systems, where

quasi-periodicity is built up. From experimental side, it has been possible to construct Fibonacci super-
lattices by epitaxial growths methods (Merlin et al., 1985) and some stable 1D QCs have been obtained

(Yang et al., 1996). From theoretical side, Wang et al. (1997) derived all the possible point groups and space

groups of 1D QCs; Liu et al. (1997) studied the physical properties of 1D QCs. However, comparatively less
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works have been done on the theory of elasticity of 1D QCs. The difficulty to tackle these types of problems

comes from more elastic constants as well as coupling phonon–phason fields. Although there are some

research papers on elasticity theory of 1D QCs (Fan et al., 1999; Li and Fan, 1999; Peng and Fan, 2000;

Peng et al., 2000; Peng and Fan, 2001; Liu et al., 2003), they involve only the elasticity theory of 1D
hexagonal QCs with point group 6mm, which is the simplest class of 1D QCs. The present paper is devoted

to general solutions of plane elasticity problems of 1D QCs, dealing with all point groups and its appli-

cation.

Defectiveness of quasi-crystalline materials was observed (Zhang and Urban, 1989). It is well known that

defects influence physical and mechanical properties of solid materials greatly. Experiments showed that

QCs are quite brittle (Meng et al., 1994), and the brittle materials are sensitive to the defects. As an

application of elastic theory of the QCs, one typical example of dislocation is investigated and the exact

analytic solutions of the elastic fields are given.
2. Basic theory

A 1D QCs is defined as a three dimensional body of which the atom arrangement is periodic in a plane

and quasi-periodic in the third direction. From Wang et al. (1997), there are 31 possible point groups in 1D
QCs, which are divided into ten Laue classes and six systems, namely, triclinic, monoclinic, orthorhombic,

tetragonal, trigonal and hexagonal system. In the case of plane elasticity, the body of QCs must have at

least a symmetric plane. On the other hand, there exists at least one symmetric plane in all 1D QCs systems

except triclinic QCs, so the investigation of the plane elasticity of 1D QCs is meaningful and extensive. In

this paper, we assume the unique quasi-periodic axis of 1D QCs is axis x3 in a rectilinear coordinate system
ðx1; x2; x3Þ.
A theoretical description of the deformed state of QCs requires a combined consideration of interrelated

phonon and phason fields. Owing to the existence of phason fields, the elasticity of QCs is more complex
than that of the conventional crystals. In QCs, a phason displacement field v exists in addition to a phonon
displacement field uðu1; u2; u3Þ. They have mutual interaction.
Let e11, e22, e33, e23, e31, e12, w33, w31, w32 denote the phonon strains eij and phason strains w3j, and r11, r22,

r33, r23, r31, r12, H33, H31, H32 denote the phonon stress rij and phason stress H3j, respectively. Then the
generalized Hooke’s laws of the elasticity problem of 1D QCs are
rij ¼ Cijklekl þ Rij3lw3l ði; j; k; l ¼ 1; 2; 3Þ; ð1Þ
H3j ¼ Rkl3jekl þ K3j3lw3l ð2Þ
and the static equilibrium equations in the absence of body forces are
o1r11 þ o2r12 þ o3r13 ¼ 0; o1r21 þ o2r22 þ o3r23 ¼ 0; ð3Þ
o1r31 þ o2r32 þ o3r33 ¼ 0; o1H31 þ o2H32 þ o3H33 ¼ 0: ð4Þ
Besides, geometry equations are given by
eij ¼
1

2
ðojui þ oiujÞ; w3j ¼ ojv; i; j ¼ 1; 2; 3: ð5Þ
Here we have used tensor notation and oj ¼ o=oxj, the same hereafter.
Eqs. (1)–(5) are the basic relations of elasticity theory of 1D QCs.
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3. Plane elasticity and governing equation of monoclinic QCs

For monoclinic QCs, there are 25 elastic constants in all, namely, C1111, C2222, C3333, C1122, C1133, C1112,
C2233, C2212, C3312, C3232, C3231, C3131, C1212 for phonon fields, K3333, K3131, K3232, K3132 for phason fields, and
R1133, R2233, R3333, R1233, R2331, R2332, R3131, R3132 for coupling phonon–phason fields.
So the generalized Hooke’s laws of monoclinic QCs are given by
r11 ¼ C11e11 þ C12e22 þ C13e33 þ 2C16e12 þ R1w33;

r22 ¼ C12e11 þ C22e22 þ C23e33 þ 2C26e12 þ R2w33;

r33 ¼ C13e11 þ C23e22 þ C33e33 þ 2C36e12 þ R3w33;

r23 ¼ r32 ¼ 2C44e23 þ 2C45e31 þ R4w1 þ R5w32;

r31 ¼ r13 ¼ 2C45e23 þ 2C55e31 þ R6w1 þ R7w32;

r12 ¼ r21 ¼ C16e11 þ C26e22 þ C36e33 þ 2C66e12 þ R8w33;

H31 ¼ 2R4e23 þ 2R6e31 þ K1w31 þ K4w32;

H32 ¼ 2R5e23 þ 2R7e31 þ K4w31 þ K2w32;

H33 ¼ R1e11 þ R2e22 þ R3e33 þ 2R8e12 þ K3w33:

ð6Þ
Here and subsequently we write the elastic constant Cijkl in a contracted matrix notation Cpq as was done in

the case of conventional crystal, and we have K3131 ¼ K1, K3232 ¼ K2, K3333 ¼ K3, K3132 ¼ K4, R1133 ¼ R1,
R2233 ¼ R2, R3333 ¼ R3, R2331 ¼ R4, R2332 ¼ R5, R3131 ¼ R6, R3132 ¼ R7 and R1233 ¼ R8.
When the direction of defects such as infinitely long straight dislocations and cracks etc. is parallel to the

quasi-periodic axis of 1D QCs, the geometry properties of the materials will not change along the quasi-

periodic direction. If we take quasi-periodic axis of 1D QCs for axis x3, then
oð Þ
ox3

¼ 0; ð7Þ
i.e. all fields variables depend only on coordinates x1 and x2. This is so-called plane elasticity (Fan, 1999).
Substitution of Eq. (7) in Eqs. (3)–(6) leads to two separate problems as follows:

Problem I
r23 ¼ r32 ¼ 2C44e23 þ 2C45e31 þ R4w31 þ R5w32; ð8Þ

r31 ¼ r13 ¼ 2C45e23 þ 2C55e31 þ R6w31 þ R7w32; ð9Þ

H31 ¼ 2R4e23 þ 2R6e31 þ K1w31 þ K4w32; ð10Þ

H32 ¼ 2R5e23 þ 2R7e31 þ K4w31 þ K2w32; ð11Þ

e3j ¼ ej3 ¼
1

2
oju3; w3j ¼ ojv; j ¼ 1; 2; ð12Þ

o1r31 þ o2r32 ¼ 0; o1H31 þ o2H32 ¼ 0: ð13Þ
This is a anti-plane elasticity problem for coupling phonon–phason fields.
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Problem II
r11 ¼ C11e11 þ C12e22 þ 2C16e12; ð14Þ

r22 ¼ C12e11 þ C22e22 þ 2C26e12; ð15Þ

r12 ¼ r21 ¼ C16e11 þ C26e22 þ 2C66e12; ð16Þ

r33 ¼ C13e11 þ C23e22 þ 2C36e12; ð17Þ

H33 ¼ R1e11 þ R2e22 þ 2R8e12; ð18Þ

eij ¼
1

2
ðojui þ oiujÞ i; j ¼ 1; 2; ð19Þ

o1r11 þ o2r12 ¼ 0; o1r21 þ o2r22 ¼ 0: ð20Þ
This is similar to a plane strain problem for monoclinic crystal, but has an extra Eq. (18) here.

For Problem I, substituting Eq. (12) into Eqs. (8)–(11), then into Eq. (13), yields the equilibrium
equations in terms of displacements as follows:
ðC55o21 þ C44o22 þ 2C45o1o2Þu3 þ ½R6o21 þ R5o22 þ ðR4 þ R7Þo1o2�v ¼ 0; ð21Þ

½R6o21 þ R5o22 þ ðR4 þ R7Þo1o2�u3 þ ðK1o21 þ K2o22 þ 2K4o1o2Þv ¼ 0: ð22Þ

This is a set of partial differential equations for coupling phonon–phason fields, which is very different

from that of conventional crystals. It seems to be extremely difficult to find the solution by means of direct

integration due to the complexity of the equations. Now we introduce a displacement potential function to

simplify above equations. Let
u3 ¼ ½R6o21 þ R5o22 þ ðR4 þ R7Þo1o2�F ; v ¼ �ðC55o21 þ C44o22 þ 2C45o1o2ÞF ; ð23Þ
where F ðx1; x2Þ is the displacement potential function introduced. It is clear that Eq. (21) is satisfied.
Substituting Eq. (23) into Eq. (22), we have
ða1o41 þ a2o31o2 þ a3o21o
2
2 þ a4o1o32 þ a5o42ÞF ¼ 0; ð24Þ
with constants
a1 ¼ R26 � K1C55; a2 ¼ 2½R6ðR4 þ R7Þ � K1C45 � K4C55�;
a3 ¼ 2R5R6 þ ðR4 þ R7Þ2 � K1C44 � K2C55 � 4K4C45;
a4 ¼ 2½R5ðR4 þ R7Þ � K2C45 � K4C44�; a5 ¼ R25 � K2C44:

ð25Þ
Eq. (24) indicates that the terminal governing equation of Problem I is a fourth-order partial differential

equation. Furthermore, substitution of Eq. (23) in Eqs. (8)–(11) yields
r32 ¼ ½ðR6C45 � R4C55Þo31 þ ðR6C44 � R4C45 þ R7C45 � R5C55Þo21o2 þ ðR7C44 � R5C45Þo1o22�F ; ð26Þ

r31 ¼ ½ðR5C45 � R7C44Þo32 þ ðR5C55 � R7C45 þ R4C45 � R6C44Þo22o1 þ ðR4C55 � R6C45Þo2o21�F ; ð27Þ
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H32 ¼ ½R6o21 þ R5o22 þ ðR4 þ R7Þo1o2�ðR5o2 þ R7o1ÞF � ðC55o21 þ C44o22 þ 2C45o1o2ÞðK4o1 þ K2o2ÞF ;
ð28Þ

H31 ¼ ½R6o21 þ R5o22 þ ðR4 þ R7Þo1o2�ðR4o2 þ R6o1ÞF � ðC55o21 þ C44o22 þ 2C45o1o2ÞðK1o1 þ K4o2ÞF :
ð29Þ
These are the representations of stress components in terms of the displacement potential function cor-

responding to Problem I.

For Problem II, substituting Eq. (19) into Eqs. (14)–(16), then substituting the obtained results into Eq.

(20), yields the equilibrium equations in terms of displacements as following:
ðC11o21 þ C66o22 þ 2C16o1o2Þu1 þ ½C16o21 þ C26o22 þ ðC12 þ C66Þo1o2�u2 ¼ 0; ð30Þ

½C16o21 þ C26o22 þ ðC12 þ C66Þo1o2�u1 þ ðC66o21 þ C22o22 þ 2C26o1o2Þu2 ¼ 0: ð31Þ

Like Problem I, we introduce a displacement potential function to simplify them. Let
u1 ¼ ½C16o21 þ C26o22 þ ðC12 þ C66Þo1o2�G; u2 ¼ �ðC11o21 þ C66o22 þ 2C16o1o2ÞG; ð32Þ

where Gðx1; x2Þ is another displacement potential function introduced. It is clear that Eq. (30) is satisfied.
Substituting Eq. (32) into Eq. (31), we have
ðc1o41 þ c2o31o2 þ c3o21o
2
2 þ c4o1o32 þ c5o42ÞG ¼ 0; ð33Þ
with constants
c1 ¼ C216 � C11C66; c2 ¼ 2ðC16C12 � C11C26Þ;
c3 ¼ C212 � 2C16C26 þ 2C12C66 � C11C22;

c4 ¼ 2ðC26C12 � C16C22Þ; c5 ¼ C226 � C22C66:

ð34Þ
Eq. (33) indicates that the terminal governing equations of Problem II is also a fourth-order partial

differential equation. Furthermore, substitution of Eq. (32) in Eqs. (14)–(16) yields
r11 ¼ ½ðC11C66 � C216Þo21o2 þ ðC11C26 � C16C12Þo1o22 þ ðC16C26 � C12C66Þo32�G; ð35Þ

r22 ¼ ½ðC12C16�C11C26Þo31þ ðC212þC12C66�C16C26 �C11C22Þo21o2� 2C16C26o21o2 þ ðC226�C22C66Þo32�G;
ð36Þ

r12 ¼ ½ðC216 � C11C26Þo31 þ ðC12C16 � C11C26Þo21o2 þ ðC12C66 � C16C26Þo1o22�G: ð37Þ
Similarly, r33 and H33 can also be obtained, which are omitted here because we consider the stresses in the
x1–x2-plane only.
These are the representations of stress components in terms of the displacement potential function

corresponding to Problem II.
Hence, the plane elasticity of 1D monoclinic QCs is governed by two fourth-order partial differential

equations (24) and (33).
4. General solution for monoclinic QCs

Following Sosa (1991) and Lekhnitskii (1963), the solution of the fourth-order partial differential

equation (24) can be represented by two analytic functions FkðzkÞðk ¼ 1; 2Þ as following
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F ðx1; x2Þ ¼ 2Re
X2
k¼1

FkðzkÞ; zk ¼ x1 þ lkx2; ð38Þ
where Re denotes the real part of corresponding complex expression; lk ¼ ak þ ibk (with i ¼
ffiffiffiffiffiffiffi
�1

p
, k ¼ 1,2)

are distinct complex parameters to be determined by the characteristic equation
a5l4 þ a4l3 þ a3l2 þ a2l þ a1 ¼ 0; ð39Þ
and l1 6¼ l2.
If the roots of Eq. (39) are multi-roots, namely l1 ¼ l2, we have
F ðx1; x2Þ ¼ 2Re½F1ðz1Þ þ z1F2ðz1Þ�; z1 ¼ x1 þ l1x2: ð40Þ

The lkðk ¼ 1; 2Þ can be, in principle, calculated analytically when the elastic constants of the QCs are

given.

Substitution of Eq. (38) in Eqs. (23) and (26)–(29) yields
u3 ¼ 2Re
X2
k¼1

½R6 þ ðR4 þ R7Þlk þ R5l2k �fkðzkÞ; ð41Þ

v ¼ �2Re
X2
k¼1

ðC55 þ 2C45lk þ C44l2kÞfkðzkÞ; ð42Þ

r32 ¼ 2Re
X2
k¼1

½R6C45 � R4C55 þ ðR6C44 � R4C45 þ R7C45 � R5C55Þlk þ ðR7C44 � R5C45Þl2k �f 0
kðzkÞ; ð43Þ

r31 ¼ 2Re
X2
k¼1

½R4C55 � R6C45 þ ðR5C55 þ R4C45 � R7C45 � R6C44Þlk þ ðR5C45 � R7C44Þl2k �lkf
0
kðzkÞ;

ð44Þ

H32 ¼ 2Re
X2
k¼1

½ðR7 þ R5lkÞðR6 þ R4lk þ R7lk þ R5l2kÞ � ðK4 þ K2lkÞðC55 þ 2C45lk þ C44l2kÞ�f 0
kðzkÞ;

ð45Þ

H31 ¼ 2Re
X2
k¼1

½ðR6 þ R4lkÞðR6 þ R4lk þ R7lk þ R5l2kÞ � ðK1 þ K4lkÞðC55 þ 2C45lk þ C44l2kÞ�f 0
kðzkÞ;

ð46Þ

where fkðzkÞ ¼ o2zk FkðzkÞ ¼ F 00

k ðzkÞ:
Similarly,
Gðx1; x2Þ ¼ 2Re
X2
k¼1

GkðnkÞ; nk ¼ x1 þ kkx2; ð47Þ
where nk ¼ ak1 þ ibk1 (with i ¼
ffiffiffiffiffiffiffi
�1

p
; k ¼ 1; 2) are also distinct complex parameters to be determined by the

characteristic equation
c5k
4 þ c4k

3 þ c3k
2 þ c2k þ c1 ¼ 0: ð48Þ
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And
u1 ¼ 2Re
X2
k¼1

½C16 þ ðC12 þ C66Þkk þ C26k
2
k �gkðnkÞ; ð49Þ

u2 ¼ �2Re
X2
k¼1

ðC11 þ 2C16kk þ C66k
2
kÞgkðnkÞ; ð50Þ

r11 ¼ 2Re
X2
k¼1

½C66C11 � C216 þ ðC11C26 � C12C16Þkk þ ðC16C26 � C12C66Þk2k �kkg0kðnkÞ; ð51Þ

r22 ¼ 2Re
X2
k¼1

½C16C12 � C11C26 þ ðC226 þ C12C66 � C16C26 � C11C22Þkk � 2C16C22k2k

þ ðC226 � C22C66Þk3k �g0kðnkÞ; ð52Þ

r12 ¼ 2Re
X2
k¼1

½C216 � C11C66 þ ðC16C12 � C11C26Þkk þ ðC12C66 � C16C26Þk2k �g0kðnkÞ; ð53Þ
where gkðnkÞ ¼ o2nkGkðnkÞ ¼ G00
kðnkÞ:

These are the complex variable representations of displacement and stress components of phonon fields

and phason fields in 1D monoclinic QCs. They are so-called general solutions of plane elasticity of 1D

monoclinic QCs. With this general solutions, it is very convenient to give the special solution of some

dislocation and crack problems of 1D QCs.
5. Other 1D QC systems

5.1. Orthorhombic QC system

In the sequel, the meaning of symbol for the point groups is the same as in (Wang et al., 1997).

Orthorhombic QCs comprise the point groups 2h2h2, mm2, 2hmmh and mmmh, which belong to one Laue

class. Owing to the increase of symmetric elements of orthorhombic QCs in comparison with monoclinic
QCs, one has also
C16 ¼ C26 ¼ C36 ¼ C45 ¼ K4 ¼ R4 ¼ R7 ¼ R8 ¼ 0: ð54Þ
Therefore the number of non-zero elastic constants of orthorhombic QCs reduces to 17, namely, C11, C22,
C33, C12, C13, C23, C44, C55, C66 for phonon fields; K1, K2, K3 for phason fields; R1, R2, R3, R5, R6 for coupling
phonon–phason fields.

Substituting (54) into Eqs. (25) and (34), we find that a1 and a5 are the same as in (25), and
a2 ¼ a4 ¼ 0; a3 ¼ 2R5R6 � K1C44 � K2C55;

c1 ¼ �C11C66; c2 ¼ c4 ¼ 0; c5 ¼ �C22C66;

c3 ¼ C212 þ 2C12C66 � C11C22:

ð55Þ
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Furthermore, all fields variables are simplified as follows
u1 ¼ 2ðC12 þ C66ÞRe
X2
k¼1

kkgkðnkÞ; u2 ¼ �2Re
X2
k¼1

ðC11 þ C66k
2
kÞgkðnkÞ; ð56Þ
u3 ¼ 2Re
X2
k¼1

ðR6 þ R5l2kÞfkðzkÞ; v ¼ �2Re
X2
k¼1

ðC55 þ C44l2kÞfkðzkÞ; ð57Þ
r11 ¼ 2Re
X2
k¼1

ðC66C11 � C12C66k
2
kÞkkg0kðnkÞ; ð58Þ
r22 ¼ 2Re
X2
k¼1

½ðC212 þ C12C66 � C11C22Þ � C22C66k
2
k �kkg0kðnkÞ; ð59Þ
r12 ¼ 2Re
X2
k¼1

ð�C11C66 þ C12C66k
2
kÞg0kðnkÞ; ð60Þ
r32 ¼ 2Re
X2
k¼1

ðR6C44 � R5C55Þlkf
0
kðzkÞ; ð61Þ
r31 ¼ 2ðR5C55 � R6C44ÞRe
X2
k¼1

l2kf
0
kðzkÞ; ð62Þ
H2 ¼ 2Re
X2
k¼1

½R5R6 � K2C55 þ ðR25 � K2C44Þl2k �lkf
0
kðzkÞ; ð63Þ
H1 ¼ 2Re
X2
k¼1

½R26 � K1C55 þ ðR5R6 � K1C44Þl2k �f 0
kðzkÞ: ð64Þ
5.2. Tetragonal QC system

1D tetragonal QCs divide into two Laue classes. Point groups �42hm, 4mm, 42h2h and 4/mhmm in the
QCs belong to one Laue class. Owing to the increase of new symmetric elements of tetragonal QCs, besides

(54), one has also
C11 ¼ C22; C13 ¼ C23; C44 ¼ C55; K1 ¼ K2; R1 ¼ R2; R5 ¼ R6: ð65Þ
Therefore the number of non-zero elastic constants of 1D tetragonal QCs reduces to 11.

Substituting (65) into Eqs. (55)–(64), simplified forms of the governing equations and general solutions

will be obtained.
Point groups �4, 4 and 4/mh in tetragonal QC system belong to another Laue class, of which the plane

elasticity can be simplified with the same process.
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5.3. Hexagonal QC system

1D hexagonal QCs divide into two Laue classes. The point groups 6, �6 and 6/mh mmmh belong to one,
and 62h2h, 6mm, �6m2h and 6/mhmm belong to another. Owing to the increase of symmetric elements of
hexagonal QCs in comparison with monoclinic QCs, for the point groups 6, �6 and 6/mh mmmh, we have
also
C11 ¼ C22; C13 ¼ C23; C44 ¼ C55; 2C66 ¼ C11 � C12; C16 ¼ C26 ¼ C36 ¼ C45 ¼ 0;
K1 ¼ K2; K4 ¼ 0; R1 ¼ R2; R5 ¼ R6; R4 ¼ �R7; R8 ¼ 0:

ð66Þ
Therefore the number of their non-zero elastic constants reduces to 11, namely C11, C33, C12, C13, C44 for
phonon fields; K3;K1 for phason fields; R1, R3, R4, R6 for coupling phonon–phason fields. Note that al-
though the number of two classes of QCs in Sections 5.2 and 5.3 is same, the components of them are

different, consequently the governing equation and general solution are also different.

For the point groups 62h2h, 6mm, �6m2h and 6/mhmm, besides (66), we have also R4 ¼ 0.
Substituting (66) into Eqs. (25) and (34), we get
a1 ¼ a5 ¼ R25 � K1C44; a2 ¼ a4 ¼ 0; a3 ¼ 2ðR25 � K1C44Þ; ð67Þ

c1 ¼ c5 ¼ �C11C66; c2 ¼ c4 ¼ 0; c3 ¼ �2C11C66: ð68Þ

Substitution of (67) in Eq. (24) and (68) in Eq. (33), yields the governing equations as follows
r2r2F ¼ 0; r2r2G ¼ 0; ð69Þ

where r2 ¼ o21 þ o22.

Eq. (69) is the well-known bi-harmonic equation in classical elasticity. In this case, the characteristic

equation of (69) is l4 þ 2l2 þ 1 ¼ 0. So l ¼ �i, and F ¼ 2Re½F1ðzÞ þ �zF2ðzÞ�, G ¼ 2Re½G1ðzÞ þ �zG2ðzÞ�. FiðzÞ
and GiðzÞ are the well-known complex potential functions (Muskhelishvili, 1963). Furthermore, there are
many methods such as complex potential method, Riemann–Hilbert boundary value method and Fourier

transform method etc. to solve the bi-harmonic equation in classical elastic theory. Specially, under the
condition of C44K1 � R5 6¼ 0, Eq. (24) gives the result obtained by Fan (1999).
6. An example

As an application of above theory, we investigate a typical example of dislocation in the orthorhombic

QCs. The dislocation of QCs is described by Burgers vector in higher dimensional space (Ding et al., 1998;

Bohsung and Trebin, 1989). The dislocation of 1D QCs can be expressed by Burgers vector in four–

dimensional space. Consider an infinitely long straight dislocation parallel to the quasi-periodic direction in

an infinite body of 1D orthorhombic QCs. Then, due to the symmetry of the QCs, the problem belongs to

plane elasticity. Assume a dislocation located at point z0 in the x1–x2-plane and its Burgers vector is
ðb1; b2; b3; b?Þ. By means of the superposition principle, we have
ðb1; b2; b3; b?Þ ¼ ðb1; 0; 0; 0Þ þ ð0; b2; 0; 0Þ þ ð0; 0; b3; 0Þ þ ð0; 0; 0; b?Þ:

From (Ding et al., 1998; Bohsung and Trebin, 1989), the dislocation conditions are given by
I

L
du1 ¼ b1;

I
L
du2 ¼ b2;

I
L
du3 ¼ b3;

I
L
dv ¼ b?; ð70Þ
where L denotes a Burgers contour surrounding the dislocation z0. Note that all four integrals are made in
physical space.
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We consider the case of vanishing boundary conditions in infinity only. Substituting Eqs. (56) and (57)

into Eq. (70), through some derivation, yields
f 0
1ðz1Þ ¼ � ½ðC55 þ C44l22Þb3 þ ðR6 þ R5l22Þb?�i

4pðl21 � l22ÞðR5C55 � R6C44Þ
1

z1 � z0
; ð71Þ
f 0
2ðz2Þ ¼

½ðC55 þ C44l21Þb3 þ ðR6 þ R5l21Þb?�i
4pðl21 � l22ÞðR5C55 � R6C44Þ

1

z2 � z0
; ð72Þ
g01ðn1Þ ¼ � ½ðC11 þ C66k
2
2Þb1 þ ðC12 þ C66Þk2b2Þ�i

4pðk1 � k2ÞðC11 � C66k1k2ÞðC12 þ C66Þ
1

n1 � z0
; ð73Þ
g02ðn2Þ ¼
½ðC11 þ C66k

2
1Þb1 þ ðC12 þ C66Þk1b2�i

4pðk1 � k2ÞðC11 � C66k1k2ÞðC12 þ C66Þ
1

n2 � z0
: ð74Þ
Integrating Eqs. (71)–(74), then substituting them into Eqs. (56) and (57), yields the displacement com-

ponents of phonon and phason fields for a dislocation in 1D orthorhombic QCs. By direct substitution of

Eqs. (71)–(74) in Eqs. (58)–(64), we will obtain all stress components of the elastic fields. So the problem of

dislocation of orthorhombic QCs is solved.
7. Conclusion and discussion

Now we summarize the main contents of this paper. First, plane elasticity theory of 1D QCs dealing with

various point groups is established, and the governing equations in terms of the displacement potential

functions are given. Second, general solutions expressed by complex variable functions are presented, which

provide the foundation of solving some boundary value problems of QCs. Third, as an application of the

general solutions, the dislocation problem in 1D orthorhombic QCs is investigated and its exact analytic

solutions are obtained. The result indicates that a straight dislocation in 1D QCs includes two parts: one

corresponds to purely edge type, and another corresponds to screw type of coupling phonon–phason fields.

The two parts exist independently, and are superimposed. Meanwhile, the stresses for a straight dislocation
still own one order singularity as in conventional elasticity, but are related also with the Burgers vector of

phason fields. This property shows that the dislocation of QCs results from the mistake of its atom

arrangement, because the phason stands for the atom arrangement of the QCs. Finally, as an open

problem, we don’t know if the case of the roots lk being real number is true for QCs. This is not the case for

ordinary elastic material (Sosa, 1991).
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